Conformal multi-symplectic integration methods for forced-damped semi-linear wave equations

نویسنده

  • Brian E. Moore
چکیده

Conformal symplecticity is generalized to forced-damped multi-symplectic PDEs in 1+1 dimensions. Since a conformal multi-symplectic property has a concise form for these equations, numerical algorithms that preserve this property, from a modified equations point of view, are available. In effect, the modified equations for standard multi-symplectic methods and for space-time splitting methods satisfy a conformal multi-symplectic property, and the splitting schemes exactly preserve global symplecticity in a special case. It is also shown that the splitting schemes yield incorrect rates of energy/momentum dissipation, but this is not the case for standard multi-symplectic schemes. These methods work best for problems where the dissipation coefficients are small, and a forced-damped semi-linear wave equation is considered as an example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit multi-symplectic extended leap-frog methods for Hamiltonian wave equations

In this paper, we study the integration of Hamiltonian wave equations whose solutions have oscillatory behaviors in time and/or space. We are mainly concerned with the research for multi-symplectic extended Runge-Kutta-Nyström (ERKN) discretizations and the corresponding discrete conservation laws. We first show that the discretizations to the Hamiltonian wave equations using two symplectic ERK...

متن کامل

Second Order Conformal Symplectic Schemes for Damped Hamiltonian Systems

Numerical methods for solving weakly damped Hamiltonian systems are constructed using the popular Störmer-Verlet and implicit midpoint methods. Each method is shown to preserve dissipation of symplecticity and dissipation of angular momentum of an N -body system with pairwise distance dependent interactions. Necessary and sufficient conditions for second order accuracy are derived. Analysis for...

متن کامل

Multi-Symplectic Runge-Kutta Collocation Methods for Hamiltonian Wave Equations

A number of conservative PDEs, like various wave equations, allow for a multi-symplectic formulation which can be viewed as a generalization of the symplectic structure of Hamiltonian ODEs. We show that Gauss-Legendre collocation in space and time leads to multi-symplectic integrators, i.e., to numerical methods that preserve a symplectic conservation law similar to the conservation of symplect...

متن کامل

Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations

For classes of symplectic and symmetric time-stepping methods — trigonometric integrators and the Störmer–Verlet or leapfrog method — applied to spectral semi-discretizations of semilinear wave equations in a weakly nonlinear setting, it is shown that energy, momentum, and all harmonic actions are approximately preserved over long times. For the case of interest where the CFL number is not a sm...

متن کامل

Vibration and Bifurcation Analysis of a Nonlinear Damped Mass Grounded System

In this paper, vibrations and bifurcation of a damped system consists of a mass grounded by linear and nonlinear springs and a nonlinear damper is studied. Nonlinear equation of motion is derived using Newton’s equations. Approximate analytical solutions are obtained using multiple time scales (MTS) method. For free vibration, the approximate analytical results are compared with the numerical i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematics and Computers in Simulation

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2009